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Abstract. The spin–charge separation (SCS) in 1D and 2D are discussed from the viewpoint of
gauge theory. For 1D I discuss the angle-resolved photoemission spectra (ARPES), which show
clear evidence for the spin–charge separation. For 2D the underdoped cuprates are discussed,
where the three classes of electronic state, i.e., the Néel state (N), the valence-bond solid
(VBS) state and the resonating-valence-bond (RVB) state, are relevant. These states can be
understood in terms of the competition between (i) magnetic ordering versus singlet formation
and (ii) confinement versus deconfinement of the gauge field. It is fairly easy to understand
the former, (i), but the latter, (ii), is more subtle and has not yet been established. I argue that
the deconfining phase, i.e., the RVB state, is anew state of matterwith SCS, and is realized
when the sheet resistanceR2D is less than a critical value of the order of the quantum resistance
RQ = h/4e2. This condition is equivalent to that for superconductivity in the Josephson network
model. The anomalous Kondo effect due to the non-magnetic impurities doped into the system
reflects the non-Fermi-liquid nature of the host electronic state, and hence is the most promising
experimental evidence for this new state of matter. We put special emphasis on the residual
resistivity, and propose that its value provides a clear test for SCS.

1. Introduction

Spin–charge separation (SCS) is one of the key issues in the physics of strongly correlated
electronic systems. The non-Fermi-liquid state in 1D has been studied for a long time,
since the seminal work by Tomonaga [1] and, later, by Luttinger [2]. In 1D, the low-energy
excitations are exhausted by the collective ones because the Fermi surface consists of just
two points atk = ±kF . The collective modes are more sensitive to the interactions than the
individual ones, and it is true even in 3D that the spin and charge collective excitations are
separated and decoupled. The Tomonaga–Luttinger (TL) liquid is a very general concept
in 1D systems where the large quantum fluctuation destroys the long-range ordering (LRO)
even atT = 0, and hence the quantum liquid is realized. The AF Heisenberg spin chain is a
typical example of this, for which there is no antiferromagnetic long-range order (AFLRO).
When the spin quantum numberS is half an odd integer, the excitation spectrum is gapless,
while it has a gap for integerS [3]. For the integer-spin Heisenberg chain and the two-leg-
ladder Heisenberg system [4], the spin gap can be understood in terms of the valence-bond
solid (VBS) picture, i.e., the solid state of the singlet pair. In this sense, it is similar to the
spin–Peierls system, where the lattice dimerization is accompanied by a singlet solid. In
the field theoretical formulation, the difference between half-odd-integer and integer spin
comes from the topological property, i.e., the Berry phase, in the non-linear sigma model
[3]. Hence the gauge field is highly relevant to the whole issue.
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The discovery of high-Tc cuprates in 1986 triggered theoretical studies searching for
the new state of matter induced by the strong electron correlation in quasi-2D electronic
systems. The most novel of these is the RVB (resonating-valence-bond) state first proposed
by Anderson at the early stages of high-Tc research [5]. Due to the strong quantum
fluctuation in the antiferromagnetic spin system, the Néel order is sometimes destroyed
and the quantum spin liquid is realized as in 1D systems. However, the situation is less
clear in 2D. Although many theoretical studies are guided by the 1D results, the relationship
between 1D and 2D is not revealed sufficiently at present. This issue is becoming of even
keener interest due to the discovery of superconductivity in the two-leg-ladder compound
stemming from the spin-gap state in the undoped material. Thus one of the most important
theoretical issues at present is how to characterize and identify the states in the strongly
correlated systems.

In this paper, we report on some of the recent progress on the SCS in 1D and 2D
strongly correlated systems. In section 2 we give a brief review of the gauge theory of
SCS. In section 3 the angle-resolved photoemission spectrum (ARPES) is studied from the
gauge theoretical viewpoint. In sections 4 and 5 we study the underdoped 2D high-Tc
cuprates in terms of the recently developed SU(2) gauge theory. There are the two criteria
used to classify the states of matter. One is the competition between the magnetic ordering
and the singlet formation. The other criterion is more subtle and is not yet established.
That is the confinement versus deconfinement of the gauge field appearing in the lattice
gauge theoretical formulation of the strongly correlated electronic systems. We propose
in section 5 that the anomalous Kondo effect is important evidence for the SCS; this is
explained also in terms of the SU(2) theory.

2. Gauge theory of the spin–charge-separated system

A formulation for the spin–charge separation is developed in terms of the slave-boson
formalism combined with the gauge theory. We start with thet–J model which is considered
to be a model for high-Tc cuprates [5]. The Hamiltonian is

H =
∑
(ij)

[
J

(
Si · Sj − 1

4
ninj

)
− t (c†αicαj + HC)

]
(1)

where the electron operatorc†iσ creates an electron with spinσ on site i, and the spin
operatorSi is given by

Si = 1

2
c
†
iασαβciβ (2)

where theσ are the Pauli matrices. The most important feature of thet–J model is the
constraint that two electrons cannot occupy the same site because of the strong repulsive
interactionU . In the slave-boson method [5–7], this constraint is taken into account by
representing the electron operator by a product of spinon (fermion) operators,f

†
iσ , and holon

(boson) operators,bi , as follows:

c
†
iσ = f †iσ bi . (3)

This means that the creation of an electron corresponds to the annihilation of a vacancy
(holon) and the creation of a spin (spinon). The physical states satisfy the local constraint∑

σ

f
†
iσ fiσ + b†i bi = 1 (4)
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corresponding to the three possible states for each site. Then the partition functionZ of the
t–J model is represented in terms of the functional integral as

Z =
∫

Dψ Dψ† Db Db∗ DU Da0 exp

(
−
∫ β

0
L

)
(5)

with the LagrangianL being given by

L = J̃

2

∑
〈ij〉

Tr
[
U
†
ijUij

]+ 1

2

∑
ijα

ψ
†
iα

[
(∂τ + a0τ3)δij + J̃Uij

]
ψjα

+
∑
i

b
†
i (∂τ − µ+ a0)bi − t

∑
ij

χij b
†
j bi

= LF + LB. (6)

The first line is the LagrangianLF for the fermions while the second line is the contribution
LB from the doped holes. We have introduced the Stratonovich–Hubbard fieldUij to
decompose the interactions, and the Lagrange multiplier fielda0 to impose the constraint
equation (4). Here the matrixUij has the spinon pairing order parameter1ij and the
hopping order parameterχij as matrix elements, i.e.,

Uij =
[−χ∗ij 1ij

1∗ij χij

]
. (7)

The spinorψiα is given by

ψ1i =
(
f1i

f
†
2i

)
ψ2i =

(
f2i

−f †1i

)
. (8)

The mean-field theory of the spin–charge-separated state corresponds to the saddle-point
approximation to the functional integral overχij ,1ij , a0.

The gauge theory is derived by considering the fluctuation around the saddle point. In
particular, the gauge invariance with respect to the local gauge transformation

fiσ → fiσeiθi

bi → biσeiθi
(9)

must be respected. This gauge invariance is closely connected to the constraint equation
(4), which has been treated in an averaged way in the mean-field theory. To recover the
gauge invariance we need a gauge field which transforms according to equation (9) as

aij → aij + θi − θj . (10)

The phase of the order parameterχij plays exactly this role, as

χij = |χij |eiij (11)

and the time component of the gauge field is given bya0, already introduced. According
to this the spinon pairing,1ij has the gauge charge 2, and if it has non-zero expectation
value, the gauge invariance is broken. Similarly the Bose condensation〈bi〉 also breaks the
gauge invariance.
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3. Angle-resolved photoemission spectra of the Mott insulator

Experimentally, angle-resolved photoemission spectroscopy (ARPES) became a powerful
tool for investigating the issue of SCS because it gives information on the electron Green’s
function directly as a function of the momentum and energy. Recently Kimet al reported
ARPES for one-dimensional SrCuO2 [8], which is a typical example of a half-filled Mott
insulator. In the spectra, two peak structures with different dispersions are observed, and
Kim et al interpreted the results as the dispersions of the spinon and holon and hence the
first experimental evidence for a SCS in 1D. Theoretically, the electron spectral function
has been studied by several authors [9, 10].

Figure 1. (a) The spectral functionA(k, ω) with k = π/6. The simple slave-boson
decomposition gives the fully shaded line shape. The partially shaded singularities are due
to the non-local phase-string interactions. (b) The locations of the singularities are plotted in
theω–k plane.

We give here the simpler and physically transparent derivation of the spectrum in terms
of the gauge theoretical picture [11]. We have employed the slave-boson formalism given
in section 2, and the RVB mean-field Hamiltonian of thet–J model [5–7] is

H = − th
2

∑
〈i,j〉

b
†
i bj +

Js

2

∑
〈i,j〉,σ

f
†
i,σ fj,σ (12)

where the spinons and holons are decoupled from the dispersions of the order oft andJ ,
respectively. The electron Green’s function, which is observed in ARPES, is given in real
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space-time by the product of those of the spinon and holon as [7]

G(r, t) = Gspinon(r, t)Gholon(−r,−t).
The Fourier transformG(k, ω) is given by the convolution, and the spectral function

A(k, ω) = −π−1 ImG(k, ω)

is shown by the fully shaded line shape in figure 1.
The square-root singularity appears at the band edge of the holon and the energy

dispersion of the spinon gives theFk with the bandwidth 2Js . The cut-off energy has
the dispersionth, but the peak structure with such a dispersion is missing here.

What is needed additionally to reproduce the correct behaviour is the interaction
between spinons and holons, which is actually a gauge field, i.e., the non-localphase
string connecting these particles [12]. After making a unitary transformation to take care
of the sign change of the wavefunction, the electron operator is given by

c̃iσ = fiσ b†iei(θhi +θsi ) (13)

with

θhi = ∓
π

2

∑
l>i

b
†
l bl θ si = ±

π

2

∑
l>i

(f
†
l↑fl↑ + f †l↓fl↓ − 1).

Here, the spinon and the holon are described by thefree fermionsfiσ andbi , respectively,
but the original spinon and holon strongly interact with each other via non-local phase
string. Now the system is at half-filling, and the phase-string term of the holon makes no
contribution, but that of the spinon makes the long-distance behaviour of the spinon Green’s
function change fromGspinon(x, t) ∼ e±ikFs x/(x ± vst) to

Gspinon(x, t) = 〈f †x,σe−iθsxeiθs0f0,σ 〉 ∼ e±ikFs x

√
x ± vst (14)

where the Fermi velocity of the spinon

vs = dEspinon
k=kFs /dk = Js.

The bosonization technique gives this asymptotic behaviour under the constraint〈f †l↑fl↑ +
f
†
l↓fl↓〉 = 1 [12].

Taking this asymptotics into account, the spectral functionA(k, ω) is given by

A(k, ω) ∼
∫

dx dt dkh ei(ω+Eholon
kh

)t−i(k+kh∓kFs )x 1√
x ± vst

∼
∫

dX dkh e−i(k+kh∓kFs )X 1√
X
δ(ω + Eholon

kh
∓ vs(k + kh ∓ ksF )). (15)

This result is valid when low-energy anti-spinons are created below the Fermi points—that
is, when1k = kh + k ∓ ksF and1ω = ω + Eholon

−k±kFs (>0) are close to zero. The constraint
originating from theδ-function is expanded in terms of1k:

ω + Eholon
kh
∓ vs(k + kh ∓ ksF )
= 1ω ± (th cosk − Js)1k ∓ 1

2
th sink(1k)2+O((1k)3) = 0.

For k 6= k0 = cos−1(Js/th), 1ω is proportional to1k. So, theδ-function gives no
singularity and we obtain

A(k, ω) ∼
∫

dX
e−i1kX

√
X
∼ (1k)−1/2 ∝ (1ω)−1/2. (16)
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Then the square-root singularities are restored as shown by the partially shaded line shape
in figure 1(a). Summarizing, we found that the ARPES of SrCuO2 show the existence of
the spinon and holon and the non-local phase string between them.

4. SU(2) theory for underdoped cuprates

The mean-field picture of the phase diagram for high-Tc cuprates is the following. In the
plane of the hole concentrationx and the temperatureT , we have four phases [6, 7]. The
uniform RVB state corresponds to the state with non-zeroχij , but the spinon pairing1ij

and the Bose condensation〈bi〉 are absent. This uniform RVB state is unstable against
the two instabilities. One is the spinon pairing as in the case of BCS theory, and the
other is the holon condensation. The spin-gap state is characterized by the appearance of
the spinon pairing to the uniform RVB state, which is considered to be realized in the
underdoped region. The holon condensation, on the other hand, makes the system a Fermi
liquid. This appears in the overdoped region. When both of these appear, the system is
a superconductor. Theoretical studies of the anomalous physical properties in the normal
state have been extensively carried out for the uniform RVB state, which corresponds to the
optimally doped region [7]. However, if one tries to approach the underdoped spin-gap state,
one encounters several difficulties summarized in reference [13]. These difficulties originate
from the fact that the AF ordering cannot be described by the RVB order parameters, which
represent singlet formation. This means that we need more and more fluctuation ofUij in
equation (7) when approachingx = 0. To search for the important low-energy fluctuations,
we are led by symmetry considerations. It is known that atx = 0 the system has an SU(2)
symmetry exchanging the particle and hole [14]. Explicitly, the SU(2) gauge transformation
is defined as the rotation of the spinorψi in terms of an SU(2) matrixgi :

ψi → ψ̃i = g†i ψi
Uij → Ũij = g†i Uij gj .

(17)

In equation (6) the LagrangianLF for the fermions is invariant with respect to this gauge
transformation, but the holon contributionLB is not. Then, away from the half-filling,U
and Ũ are different configurations physically. However, the energy difference is expected
to be small whenx is small, and we have to include the fluctuation corresponding to the
SU(2) rotation, equation (17). This has been done and the result is the SU(2) theory whose
action is given by

L̃ = J̃

2

∑
〈ij〉

Tr
[
U
†
ijUij

]
+ 1

2

∑
i,j,α

ψ
†
αi(∂τ δij + J̃Uij )ψαj +

∑
i`

a`0i

(
1

2
ψ
†
αiτ

`ψαi + h†i τ `hi
)

+
∑
ij

h
†
i ((∂τ − µ)δij + t̃Uij )hj . (18)

Corresponding to the rotation of the spinon in equation (17), the holonbi is rotated to give
the two-component holonhi as follows:

hi = gi
[
bi
0

]
. (19)

In terms of this SU(2) formulation, the mean-field phase diagram and the fluctuation
around it has been clarified [13]. Here we focus in the next section on the problem of the
confinement–deconfinement of the gauge field for the underdoped cuprates.
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5. Confinement–deconfinement of the gauge field

In the gauge theoretical formulation, the spinon and holon have the quantum numbers
(Q, S) = (0, 1/2) and (Q, S) = (e, 0), respectively. These quantum numbers are highly
non-trivial, and in all of the conventional states the elementary excitations can be regarded
as composite particles of the spinons and holons. For example, the triplet spin excitation
in the Ńeel state is the bound state of two spinons, the electron in the Fermi-liquid state
is that of a spinon and a holon, and the bipolaron in the doped two-leg ladder is the two-
holon bound state. This means that the Fermi-liquid state, (doped) VBS state and the Néel
state belong to the confining phase of the gauge field. This is incorporated in the gauge
theoretical formulation as follows.

(1) The Fermi liquid is obtained when the holon is Bose condensed, where the gauge
field has mass due to the Higgs phenomenon, and the Higgs phase is identical to the
confining one.

(2) In the undoped case, the Heisenberg model can be mapped to the strong-coupling
limit of the SU(2) lattice gauge theory [14]. The confining phase of the gauge field is
usually accompanied with chiral symmetry breaking, which is equivalent to the AFLRO in
the present case.

Hence all of the known conventional states are described at least qualitatively in terms of
the gauge theoretical formulation with the confining gauge field. When the gauge field is
deconfining, the new state of matter, i.e., the RVB state, is realized. We clarify the relevant
physical quantity for confinement–deconfinement below.

In terms of the SU(2) formulation in section 4, the spin-gap state is described as the
staggered flux state where the original SU(2) symmetry is broken down to U(1) [13]. In
this case, the Higgs field is the particle–particle and/or particle–hole pair of the fermions,
which belongs to the adjoint representation of the SU(2) symmetry. In the gauge theoretical
language, the gauge charge of this Higgs field is not fundamental, and the Higgs phase and
the confining phase are distinct phases. These two are distinguished by the confinement–
deconfinement of the gauge field, which is the subject of the present section.

In the staggered flux state, the effective action describing the holonshi =t [b1i , b2i ] in
the underdoped spin-gap region is given by [13]

S =
∫

dτ
∫

dr h†(r, τ )

[
∂τ + ia3

0τ3+ iA0+ 1

2m
(−i∇+ a3τ3+A)2− µ

]
h(r, τ )

+
∑
q,ω

a3
µ(q, ω)5Sµν(q, ω)a

3ν(−q,−ω) (20)

where the spinons have been integrated over to give the polarization function5S in the
effective action of the gauge field. Because the gauge symmetry is broken from SU(2) to
U(1) in the staggered flux state, only thea3 gauge field remains massless. Note also that the
Ioffe–Larkin composition rule [15] no longer applies because the external vector potential
Aµ is coupled tohi by the unit matrix and not byτ3. Then the conductivity is determined by
that of the holon system. Thus in the limit of smallq andω the leading-order contributions
of the holons to the effective action for the gauge fieldsAµ anda3

µ are given as∑
q,ω

σdc|ω|(a3
⊥(q, ω)a

3
⊥(−q,−ω)+ A⊥(q, ω)A⊥(−q,−ω)) (21)

wherea3
⊥ andA⊥ are the transverse components. The contribution from the spinons5S , on

the other hand, is small compared with equation (21) in the limit of smallq, ω because of the
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d-wave-type gap in the spinon spectrum. Then the strength of the dissipation for the gauge
field is determined by the dc conductivity (conductance)σdc = R−1

2D of the system. The
phase diagram of the U(1) gauge field with dissipation has been studied, and it was found
that whenσdc is larger than a critical valueσc of the order of the quantum conductance
e2/h, the gauge field is deconfining, while it is confining otherwise [16]. On the other
hand it is known also that the superconductor–insulator transition in the 2D Josephson
network model is controlled by the conductance, and the criterion is similar to that given
above. As discussed recently, the localized vacancies in the non-linear sigma model give
the topological disorder (the random Berry phase term) which enhances the classical nature
of the staggered magnetization and leads to the AFLRO [17]. Then we see the following
correspondence:

(case A) spin–charge separation—metallic transport and superconductivity—the RVB
state (the spin liquid); and

(case B) spin–charge confinement—localization and insulator behaviour—the Néel state
(the spin solid).

According to this scenario, the ladder systems belong to case B before applying pressure.
On increasing the pressure, the anisotropy of the resistivity decreases within the ladder
plane, and eventually becomes superconducting whenR2D =

√
RaRb becomes of the order

of h/e2 [18]. This suggests that the system turns into case A and the superconductivity
is two dimensional. Note that the bipolaron will be dissociated into two charge-e holons
because the gauge field is not confining any longer. There should be a quantum critical
point between these two classes, as recently discussed by Fukuyama [19], which needs
further investigation.

6. The Kondo effect in high-Tc cuprates

We now turn to the issue of the experimental evidence for the new state of matter. We
propose that the effects of the non-magnetic impurities, e.g., Zn, replacing Cu atoms in the
conducting layers, provide evidence for the spin–charge separation. These non-magnetic
impurities induce the following anomalous properties.

(a) The formation of the magnetic moments due to Zn has been revealed by magnetic
susceptibility [20], NMR [21],µSR [22] and EPR [23]; their magnitudes are roughly
proportional to the Zn concentration and an almost full moment appears in the underdoped
region, i.e., 0.8µB for La1.85Sr0.15Cu1−zZnzO4 [24] and 0.86µB for YBa2(Cu1−zZnz)3O6.64

[21], per Zn ion. The magnitude of the induced local moments is strongly dependent on
the hole concentrationx and becomes smaller or even vanishes asx increases [25].

(b) The residual resistivity can be described in terms of the classical expression in terms
of the Boltzmann transport theory [25]. That is,

ρres= 4(h̄/e2)(nimp/n) sin2 δ0 (22)

which is independent of the effective mass of the carriers and is determined only by the
phase shiftδ0, the impurity concentrationnimp and the carrier densityn. It has been found
that Zn acts as a strong scatterer at the unitary limit, i.e.,δ0 = π/2. The interesting thing
is that the number of carriersn is the hole concentrationx in the underdoped region, and
rather rapidly crosses over to the electron number 1− x in the overdoped region.

I now discuss how these anomalous features can be understood in terms of the gauge
theory [26]. The transport and magnetic properties are determined in different ways in
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terms of the spinons and holons. The magnetic properties are dominated by the spinons,
and the formation of the local spin moment has been attributed to the spin-gap formation
in the underdoped region. Due to the linear density of states, the spinons cannot screen
the local moment induced by the non-magnetic impurity, while the Kondo screening occurs
in the optimally or overdoped region without the spin gap. Let us turn to the residual
resistivity. The residual resistivity is determined by the phase shift for the spinons and
holons. In the optimally and overdoped region, the usual argument in terms of the Friedel
sum rule and Kondo effect applied to the spinons, while the holon phase shift is 0 orπ

because there is no spin label for holons. Then the residual resistivity is predicted to be
ρres = 4(h̄/e2)nimp/(1− x) in agreement with experiments. In the underdoped region the
situation is more anomalous because the number of carriersn in equation (8) isx, which
contradicts the Fermi-liquid picture. Furthermore,ρres in the underdoped region is also
inconsistent with the small-hole-pocket picture for the Néel state.

An SU(2) theory discussed in section 2 [13] resolves several difficulties in the U(1)
formulation, and describes the smooth crossover from the small pockets to the large Fermi
surface. A feature of this theory is that the holon is the two-component SU(2) doublet as
in equation (2), and the SU(2) constraint is given by∑

σ

f
†
iσ fiσ + b†1ib1i − b†2ib2i = 1. (23)

Then the local moment formation means that1
∑

σ f
†
iσ fiσ = 1 when we consider the

large sphere including the Zn atom. This condition together with the neutrality condition
determines the holon phase shift uniquely asδb2 = −δb1 = π/2, which gives the result
ρres= 4(h̄/e2)nimp/x in agreement with experiments [25]. Hence we believe that the SU(2)
formulation is essential for explaining the residual resistivity in the underdoped region.

Summarizing this section, we have analysed the Kondo effect in high-Tc cuprates on
the basis of the spin–charge-separated state. The change of the phase shiftsδholon andδspinon

for holons and spinons due to the Kondo screening together with the crossover from SU(2)
to U(1) theory explains the change of the residual resistivity from

ρres= 4h̄

e2

nimp

x
to

ρres= 4h̄

e2

nimp

1− x
as the hole concentration increases and the local moment disappears. Lastly we comment on
the bipolaronic model for the underdoped cuprates. In this model the charge of the carrier
is 2e andn = x/2 in the underdoped region. This gives

ρres= 2h̄

e2

nimp

x

which is half of that expected on the basis of the above. Thus the experiments support the
existence of a carrier not with charge 2e but with chargee.
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